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In order to address the key technical issue of discharge stability
in mercury halide lasers; a theoretical study is made to predict
the stability criteria in recombination and attachment-dominated
metal vapor discharges. In mercury halide laser discharges, a
relatively large excited state population exists which dominates
the stability of these discharges. This occurs because the ex-
cited states have a smaller ionization potential and larger ioniza-
tion cross-section than the ground state. As a result, multi-step
ionization is the dominant ionization. When three step-ionization
is dominant and electron mixing of the excited states is unimpor-
tant, attachment-dominated discharges will be stable if the attach-
ment rate B2m vig where 2<m<3 and vj; is the equilibrium
ionization rate. For a recombination dominated discharge the cri-
terion in this limit is a neg>-m Vig where 1.0<m<1.5 and o is

the recombination coefficient and ngp is the equilibrium electron
density.
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I. INTRODUCTION

In the last three years ARPA/ONR sponsored Visible/UV laser
programs of AERL have led to the discovery and successful devlop-
ment of important rare gas halide lasers. Specifically, we have
obtained 12 J/liter with a 10% intrinsic efficiency from KrF* by
pure e-beam pumping and 10 J/liter with a 9.5% intrinsic efficien-
cy from e-beam controlled discharge pumping. In the last year
another class of visible lasers, the mercury halides, have been

discovered.(l’z)

These molecules, like the rare gas halides, have
ionic upper levels. Hence, the formation kinetics of the upper
laser level should be rapid and efficient due to the long range
attractive forces involved in ion-ion interactions. Since the
ionization energy of mercury is lower than that of the rare gases,
the mercury halides radiate at a longer wavelength than the rare
gas halides. To date, lasing action has been obtained in HgCl

at 5576 & and HgBr at 5018 K.

E-beam controlled discharge pumping of the mercury halide
lasers could lead to very high overall laser system efficiencies-
efficiencies as high as 20%. 1In order to achieve these high
efficiencies, efficient production of mercury 3P manifold,

Hg* (3P), in a stable discharge run at high enhancement ratios
(discharge power/e-beam power) must be demonstrated. The key

technical issues are:
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1) Hg (3P) production efficiency

2) Discharge stability

3) Discharge enhancement ratio

In order to theoretically predict the characteristics of
the mercury halide lasers a coupled solution of the electron
transport equation and kinetic rate equations that model the key
formation and quenching kinetics is required. Such a solution
is necessary because the electron impact excitation and ioni-
zatoin rates are dependent on the discharge power deposited in
the gas. The solution of the Boltzmann Equation for this purpose
is generally obtained by considering only the lowest order dif-
fusion or Py approximation. This is because the more general
form of the Boltzmann Equation is not aménéble to analytic solu-
tions. The P1 approximation of the Boltzmann Equation has proved
most useful in the understanding of high pressure discharges.
However such an approximation is not necessarily valid for all
cases under consideration. Hence, the first part of this report

investigates the regions of validity of the P, approximation.

1
One of the major technical issues of the e-beam controlled
discharge pumping of the mercury halide lasers is the discharge
stability. The mercury halide laser discharges which are typi-
cal of attachment-dominated discharges are characterized by a
relatively large excited state population. These excited states

dominate the stability of these discharges. Typically they have

a smaller ionization potential and a larger ionization cross
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. section than the ground state. As a consequence these effects

lead to a condition where multi-step ionization dominates. A

theoretical study to establish the stability criteria (for both

sy

attachment and recombination dominated discharges) is reported

;
in the second part of this report.
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II. ON THE DIFFUSION APPROXIMATION OF THE
BOLTZMANN EQUATION FOR SLOW ELECTRONS

The lowest order diffusion or Pl approximation of the
Boltzmann equation has proved most useful in the understanding

of high pressure discharges. There have been several efforts

addressing the domain of applicability of this approximation.(l)

(2) has shown that the

In one of the earliest discussion Holstein
diffusion approximation is valid when the elastic cross section
for electron heavy particle collisions is large compared to the
inelastic cross section. This criterion has also been used in

the Bethe Age theory for electron and neutron diffusion.(3’4)

While,
for most gases, this criterion is well satisfied, there are in-
stances when the magnitude of inelastic and elastic cross sections

(5)

are comparable. For example, recent measurements of the vibra-
tional cross section of N2 evaluates the peak cross section in the
energy range of 2-3 eV, to about 12 X, which is comparable to the

peak elastic cross section of 30 22 for N

(6)

2 evaluated by Englehardt,
Phelps and Risk.
In this article we investigate the applicability of the P1
approximation by considering a narrow band of electrons in energy
space. It is shown that the angular distribution function depends
on two dimensionless parameters, y and £. Yy is the ratio of the

energy gained by an electron in the electric field per transport

mean free path to the electron energy and £ is the ratio of the

VAVEOD EVERETT




energy lost by inelastic collisions per transport mean free path
along its trajectory to the electron energy. The former is a
familiar parameter in plasma physics, while the later is propor-
tional to the ratio of the inelastic to the elastic cross sections.
The analysis presented suggests that when the spatial derivative
of the distribtuion function cannot be neglacted, the P1 approxi-
mation is not valid for values of y and { that approach unity.
However, when the spatial derivative can be neglected, the error
in P1 approximation is limited to 5% for all electron energies

and for all values of y and £ considered. These results imply
that the applicability of the P, approximation depends strongly

on whether the sources of electrons are spatially localized or
uniformly distributed throughout the volume under consideration.
This is because for the localized source, the spatial variation

of the electron density is important, while for a uniformly dis-
tributed source the spatial variation may be neglected. Spatially

localized sources of electrons that diffuse between two electrodes

(7)

are used in swarm experiments.

Hence, for gases like N for

27
which values of y and £ are large, the evaluation of impact param-
eters from swarm data using the P1 appoximation will be suspect.
In a high pressure discharge, however, secondary electrons are
created uniformly (at least on the scale length of the transport
mean free path) through the discharge volume. For such cases,

therefore, the spatial derivative of the distribution function

may be neglected.
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The transport of a broad area electron source in the presence

of collisions can be described by the one dimensicnal Boltzmann

equation,(s)
of of 2N A0 of of
2u A X + 2 eE )\ u g + v (1-u%) e ZA{aS ; + NS e} (1)

where the distribution function f is a function of the kinetic
energy w, angular coordinate p and spatial coordinate x. u is
the cosine of the angle between electron trajectory and E, which
is assumed to be along the x direction. The transport mean free
path A is defined in the usual manner. The parameter y is the
ratio of the energy gained per transport mean free path to the

electron energy, i.e.,

_ eE)
i (2)
: . : - of : ; (8)
For isotropic elastic scattering, 3s is given by
e

2 E +1

2% 2| =<2 + S £ (u') du (3)
Sle =1

We will assume that an inelastic scattering process changes only

the energy of the electron. Then for the Jth excitation process

Q

. =z: {pJ W+ Eo) £ (Wt B - By (W) £ (w)} (4)
3

3s

where PJ(w) is the average number of collisions per unit distance

along the electron trajectory. EJ is the energy lost after the

collision. PJ(w) is zero for w < EJ.
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The usual method of solving the Boltzmann equation for
high pressure discharges is to neglect the variations of f with
x and then expand f as a sum of Legendre polynomials. Because
of the complexity only the first two polynomials are generally

retained. This procedure is valid provided, of course, that £

is nearly isotropic. A method for checking the validity of such
an approach is to simplify Eq. (1) by considering a narrow beam

of electrons (of width Aw) in energy space having a mean energy

Woe Integrating Eq. (1) over all energy, we obtain

1

+

9F 2 rraEE
ZUKO ¥ + 250F 2Y0uF + yo(l uo) T 2F + J{ F(u) du
-1

(5)

where 4

F = fdwwf(w) (6)
0

The dimensionless parameter § is the ratio of energy lost by the

electrons per transport mean free path to the energy of the elec-

tron(8)
Xo*o
&0 = —;E— when Ej ~ Aw << w, (7)
Xoto

The two definitions of 50 are obtained from Eq. (6) for the two
limiting conditions. Equation (7) is obtained by a Taylor expan-

sion of the first term on RHS of Eq. (4), while for a narrow beam

10
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this term will have a negligible contribution when E; = w. Xo
is the energy lost by the electron per unit path length along its
trajectory and is given as
)(0 = E EJPJ =N Z QJ.EIJ (9)
J J

where QJ is the inelastic cross section for the Jth process and

N is the number density of scatterers. From Egs. (7), (8) and
(9), it is clear that &0 is proportional to the ratio of the

inelastic cross section to the elastic cross section. 1In fact,
when EJ =~ Wi which is near or just above the threshold of the
excitation process, go is precisely the ratio of the inelastic
cross section to the elastic cross section. Note that EO eval-
uated by Eq. (7) is always less than when evaluated by Eq. (8),

except when Wy = E As the two values are similar and we are

J°
only making estimates of the error, we will use Eg. (7) in the
subsequent discussion. go, YO' and Xo are all evaluated at the
particular energy Wi

Dropping tl.e subscript 0 and integrating Eq. (5) over all

U we get

(-0 AN =
A A + TR V] (10)

where J is the electron current density and

+1

+1
<u> = / Fudu { f
=1

Fdu }—1
-1

11

ANVECO EVERETT

Ve g R e




or

v
X
1 .
J =3, exp - (/ ax' z%; =y (11)
Assuming
X
1
F~g(u) exp (- / dx' 225 3) (12)
Eg. (5) reduces to ]
+1
-2ug £ S epda ' '
s> T2 9= 2y ug+y (1 Kk e 2g + g(u') du
-1
(13)
Making a Legendre polynomial expansion of g (u)
glu) =2I AQPR(“) (14)
2 -
Equation (13) can be represented by 'an infinite set of simultaneous
equations 4
n+l - 28 i
Antr Gpe3) Om - 55) + A, [201-8, ) + 28]
n 28 A
= By RSl [<u> + (n+l) Y] = % (15)
Using Eq. (15) we may solve for the coefficients A2 by
truncating the series at some arbitarary 2 = L. An iterative
procedure is necessary as <u> is not known a priori. In this
manner one may obtain a solution of g(u) to any desired accuracy.
Note that when the variation of f with x is neglected then this
equation takes a simpler form (n > 0) 3

12
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n+1l

A,y (3m33) Yn + An (2+28) - A__, (z=tp) (n#1) Yy = 0 (16)

for which an iterative procedure is not necessary. The error in

the Pl approximation may be evaluated by the following ratio
E an?/ z An® (17)

It is interesting to note that the series represented by Eq. (16)
converges much more rapidly than Eq. (15) for a given y and g,
signifying that when the spatial derivative is neglected the dis-
tribution function is much more isotropic. The error for the
case when electron distribution is not a function of x, is < 5%
for all y and & values considered in Figure 1. However, the same
argument does not apply to the situation when the variation of f
with x cannot be neglected, as in the case of electron swarm ex-
periments. This result is supported through Figure 1 that shows
the contours of the error as a function of y and £. As one ex-
pects, the error increases as both Yy and £ increase. Figure 2
shows the distribution function obtained frdm our Boltzmann code
along with our estimate of error and the parameters y and £ for
an electric field of 1 kV/cm amagat in nitrogen. The error < 1%
for most of the electrons having an energy > 0.2 eV. The error
is large for a few electrons near zero energy as Holstein2 has
pointed out. This is because Y is large in this region. Since
relatively large numbers of electrons have energies beyond 0.2 eV

for this electric field (as is observed from the distribution

13
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function), the Pl approximation would be a valid approximation
for this case. However, when the electric field is increased to
20 kV/cm amagat, the value of y increases by a factor of 20 and
the corresponding error and calculated value of £ is shown in
Figure 3. It is observed that the error in using P1 approxima-
tions for this case is gquite high.

The results in this article indicate that the evaluation
of electron impact parameters from swarm data using the P, ap-
proximation will be suspect in gases like N,. However, if the
detailed cross sections are obtained from beam experiments, these
include the momentum transfer cross section, the Py approximation

is valid for high pressure discharges.

16
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III. STABILITY CRITERIA IN METAL VAPOR DISCHARGES

The stability criterion for discharges where excited state
(two-step) ionization plays &n important role has been previously
investigated.(g) Such a stability criterion has been shown(IO)
to describe high power rare gas halide laser discharges when the
discharge electric field is held constant during the discharge
pulse. 1In this letter, the stability of metal vapor discharges
is investigated. Interest in metal vapor lasers has been height-
ened since the observation of lasing action in HgCl* at 5576 R

by both pure e-beam pumping(ll)

(12)

and e-beam controlled discharge

pumping. In the high power metal vapor discharges, there .

(13)

exists a relatively large excited state population which
dominates the stability of these discharges. This occurs becau e

typically the excited states have a smaller ionization potential

[T TR Y T TR r——

and a larger ionization cross section than the ground state.

For high power discharges such as those used in pumping electronic
transition lasers, these effects lead to a condition where multi-
step ionization dominates. Both attachment and recombination
metal vapor discharges have been considered in this paper. The
mercury halide lasers are examples of attachment dominated metal

vapor discharges. The CdHg* laser(14)

is typical of recombination
dominated metal vapor discharges. In the subsequent discussion
on discharge stability, conditions typical of those found in these
lasers will be considered as examples of the stability criteria

derived.
19
AVE0O EVERETT

e —————— e . i = a4 e ey~ a——

3
:




Figure 4 shows the energy levels of cadmium, mercury and
argon (used as a buffer gas). In cadmium for example, it requires
3.7 eV to create Cd* and another 5.3 eV to ionize Cd* whereas it
requires only 2.6 eV to produce Cd** from Cd* or to ionize Cd**.
As indicated in Figure 4, Cd* and Cd** are a number of relatively
closely spaced levels. As the electron temperature will typically
be larger than this spacing, we assume that the manifold of states
represented by Cd* and Cd** will be completely mixed and hence
can be represented by a single level. Since the average electron
energy in these discharges is 1-1.5 eV three-step ionization
tends to doﬁinate at the electron densities of interest. However,
if the electron density is large such that the mixing of the two
excited states (Cd* and Cd**) by collisions of the first and
second kind is far more rapid than excited state reactions with
other heavy particles or ionization then the Cd* and Cd** may be
treated as a single level and the two-step ionization criterion(g)
derived previously is valid. 1In the cadmium mercury system,
stabilization of the discharge current will be achieved through
loss of secondary electrons by recombination. In the case of the
HgCl* laser, the excited states Hg* and Hg** will play a dominant
role in discharge stability and discharge stabilization will be
achieved through loss of electrons by attachment.

Three equations are important in determining the stability
of the discharge in the presence of rapid excited state ionization.

The first describes the production and loss of discharge electrons.

20
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e— -
e = Seb + (vi B)ne (18)

while the second describes the production and loss of Hg*(Cd*),

dn1

—— = * - * % * % — — *
3t K n_n Ku nn; + Kd n.n, Ran1 Kd nyn, (19)

and the third describes the production and loss of Hg** (Cd*¥*),

dn

—2 - g *x - K. %% 2 "2
3t Ku n_n, K3 n_n, R n, vine (20)
Assuming that the dominant ionization is the ionization of n2'(15)
vy is defined as
_ ot
Yy =K n, (21)

where K' is the ionization rate constant of n, by electron impact.
Here n is the electron density; Seb is the electron production
rate resulting from the high energy e-beam; B is the attachment
rate. Note that B = ang for recombination dominated laser (CdHg*);
o is the recombination rate; K* is the production rate constant of
n, by electron impact; Ku** is the production rate constant of n,
by electron impact; Kd* and Kd** are the superelastics rate con-
stant of ny and n, by electron impact respectively; R, is the
inverse lifetime of ny; Rb is the inverse lifetime of n,; n, ng
and n, represent the number densities Hg(Cd), Hg*(Cd*) and

Hg** (Cd**) respectively. Figure 4 depicts schematically the
terminology of the rates described above. 1In the present ana-
lysis we will assume that the ground state density n is constant.
Further, only transitions between adjacent levels have been con-

sidered as these rate constants will be by far the most rapid.

22
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Equations (18) to (20) are three nonlinear simultaneous
differential equations. If the discharge electric field is a
constant in time, we can linearize by letting,

ng, = ng + ne(t), n; = n,

o 4 + nl(t), n, =n, + nz(t) (22)

0 0

The equilibrium conditions, n, ., ny and n, is readily obtained
0 0 0
from Egqs. (18) to (20). The normalized perturbed Egs. (18) to

(20) are given by,

dn_ oy e
e = —clne + C2n2 (23)
dn, = i Y
Et— = Rane + C3n2 = C4n1 (24)
dn,, i = P
de  Tple T Sy~ Cony (25)
where 0, = ne/ne » Ny = nl/n1 » N, = nz/nz
0 0 0
and
2
aneo + Seb
C1 = % Recombination dominated (26a)
e
0
Seb
e Attachment dominated (26Db)
e
0
* %
+ = neo n20
— = * %
0 1o 0
(27a-4d)

= * %
Kd ne + R

Equations (23), (24) and (25) can be combined by elimination to

yield

23
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a* n_ - ok dn ",
+ A + B + Cn_ =0 (28)
dt3 dtz dt e
where A, B and C are functions of Cl' C2' C3, C4 and CS' For

Eq. (28) to be of stable type (i.e., the characteristic eguation
has real negative roots or the real part of the complex roots be
negative) the following conditions(16) must be satisfied,
A>0,B>0,C>0, AB-C >0 (29a-4d)
We have analyzed Eq. (29a-d) in order to establish stability
criteria for recombination and attachment dominated discharges.

The most restrictive condition is obtained from Eq. (29¢c) (i.e.,

C > 0) and is given as,

ane > (1 + €/2) vi Recombination dominated (30a)
0 0
g 2 (2 + g) vy Attachment dominated (30b)
0
AS.6,-1 R
+ 172 a
where v. =K n, , € = ¢ 64 = o =
0 2O 1+A(61+62)+A6162 1 (Ku + Kd )neo
Sai= Rb
~ (Kg** + K')n
e
0
and A = (K ** + k. T) (K ** + K_*)/(K'K ** + K. *kT 4 K_**K_*)
d d u d u d d d

It can be shown that Eq. (30) is sufficient to ensure the validity
of Eq. (29a-d). 1In such cases Eq. (28) would predict temporally
decaying solutions indicating stable discharges. The parameter

61 and 62 are the ratios of characteristic time for loss of elec-
trons by electron impact to that due to heavy particle collisions

for the two excited states. It is observed that when 62 or 61

24
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approaches zero (with Adl or Adz > 1), two-step ionization
limit similar (7]
(9)

to that derived by Daugherty, Mangano and

Jacob is recovered. This corresponds to a situation when

n, and n, are completely mixed by electrons. When 61 and 62

both approach zero, the usual single-step stability criteria

(B > v. , and an > v, ) is recovered. For this case the ex-
o o Yo

cited state population will come into thermal equilibrium with

the secondary electrons.(ls)

It is noticed from the =2xpression
for € that when electron mixing of the excited states is unim-
portant (i.e., 61,62 > 1), its value is bounded (note that

A 21) by 0 < € £ 1. The stability criteria for three-step
dominant ionization, therefore, is giveh by aneo (or B) 2 mvio
where 1 < m < 3/2 for recombination and 2 < m < 3 for attach-
ment dominated discharge. Our numerical calculations for laser
discharges typically indicate 61 =52 62 ~ 1.0 and A = 1.1 for
CdHg* and 61 =~ 13, 62 ~ 1 and A = 2 for HgCl* discharge. These
correspond to values of m = 1.1 and 2.5, respectively. In
general, knowledge of the parameters 61, 62, A and the equilibrium
values, neo, vio, etc. (obtained by solving Egs. (18) to (20),
would determine the value of m below which the discharge will go
unstable. Note also that when the electron production rate

Seb = 0, then from Eq. (18) the equilibrium condition for an
attachment dominated discharge is B = vio, which is in violation
of Eq. (30) when € > -1. Hence, an external source for electron
production is essential for discharge stability of an attachment
dominated discharge when € > -1. By a similar reasoning, a
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nonzero Seb is essential for the stability of a recombination
dominated discharge when ¢ > 0.

In order to demonstrate the validity of the linearized
analysis presented earlier, we have also numerically solved the
system of Egs. (18) to (20). Figure 5 shows the results of such
an analysis. Discharge conditions were selected such that
m ~ 3 for this case. On the left-hand side we have the stable
discharge condition, i.e., one-third of the attachment rate is
slightly greater than the equilibrium ionization rate. Note
that the discharge current reaches a constant value asymptotically.
If we keep everything constant but decrease the attachment rate
by 5%, we observe that the ionization rate increases and after
about 0.8 usec becomes greater than one-third of the attachment
rate. The discharge current grows and shows stronger than ex-
ponential growth after about 0.8 usec. In Figure 6 we show a
similar behavior for recombination dominated discharge. 1In this
case, discharge conditions were selected such that m ~ 1.5. On
the left-hand side we have again the stable discharge condition
as long as an & 3/2 Vi and the discharge current reaches a con-
stant value asymptotically. If the recombination rate is reduced
by 10%, we observe that the ionization rate increases and becomes
> 3/2 an at about 0.7 usec. The discharge current exhibits a
stronger than exponential growth after about 0.7 usec.

The volumetric instability described in this letter predicts
a temporal increase of the secondary electron dens:ty that is

faster than exponential in a spatially uniform manner. For spatial
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regions in the discharge where the stability criteria derived
N above are not satisfied, the discharge will go unstable. These
locally unstable regions will lead to arc formation if the
variation in the power deposition is in the dimension transverse
to the electric field. Consequently, for a constant electric
field, stability is guaranteed only if the criteria derived above
are satisfied at every point in space. 1In principle, resistive
or inductive ballasting can be used to stabilize the discharge.
However, the stabilizing influence of the ballast depends on the
ratio of the transverse area which is unstable to the total area
of the discharge. As this ratio decreases, the effectiveness of

resistive or inductive ballasting decreases.
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